

Управление спросом на электроэнергию. Текущее состояние и перспективы

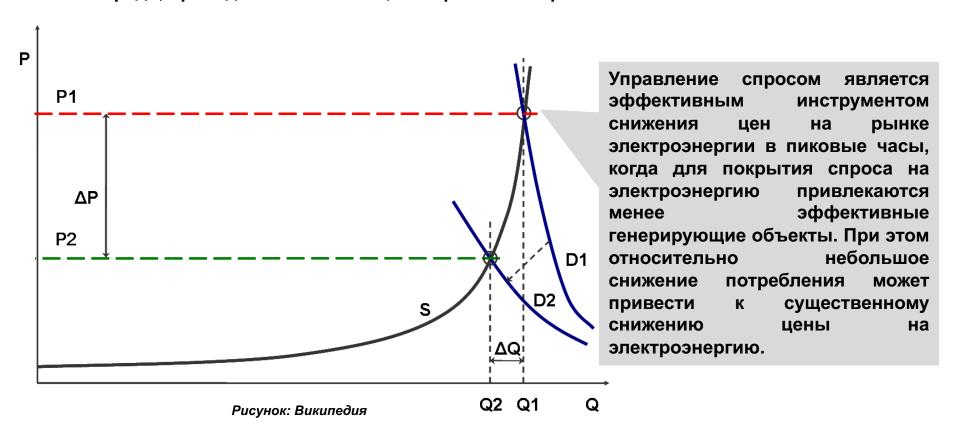
для совещания 14.03.2019

Баланс производства и потребления и рынок электроэнергии

Особенности электроэнергии как товара, обусловленные ее физическими свойствами (одновременность производства и потребления, невозможность запасания в промышленных масштабах, невозможность заранее оговорить потребления). точные объемы генерации и необходимость определяют непрерывного баланса поддержания производства потребления.

- Рынки электроэнергии проектируются таким образом, чтобы стимулировать участников поддерживать такой баланс. Традиционно основную роль в поддержании баланса играют электростанции.
- В отсутствие специальных мер стимулирования потребителей (например, таких как demand response) спрос на электроэнергию не зависит или мало зависит от цен на рынке, потребители не снижают потребление при росте цены.

В основе концепции DR лежит идея о том, что с точки зрения обеспечения баланса производства и потребления электроэнергии изменение нагрузки эквивалентно изменению генерации



Потребитель, готовый по требованию снизить свое потребление, может рассматриваться как альтернатива генерации на рынках электроэнергии и/или мощности

Экономическое управление спросом на электроэнергию

Управление спросом на электроэнергию (англ. Demand Response) – это изменение потребления электроэнергии конечными потребителями относительно их нормального профиля нагрузки в ответ на изменение цен на электроэнергию во времени или в ответ на стимулирующие выплаты, предусмотренные для того, чтобы снизить потребление в периоды высоких цен на электроэнергию на оптовом рынке или когда системная надежность под угрозой. Управление спросом может снижать цены на электроэнергию на оптовом рынке, что, в свою очередь, приводит к снижению цен на розничном рынке.

Терминология, классификация

Классификация типов программ управления спросом, предложенная NERC (Североамериканская корпорация по надёжности электроэнергетики)

Управление спросом на разных временных горизонтах

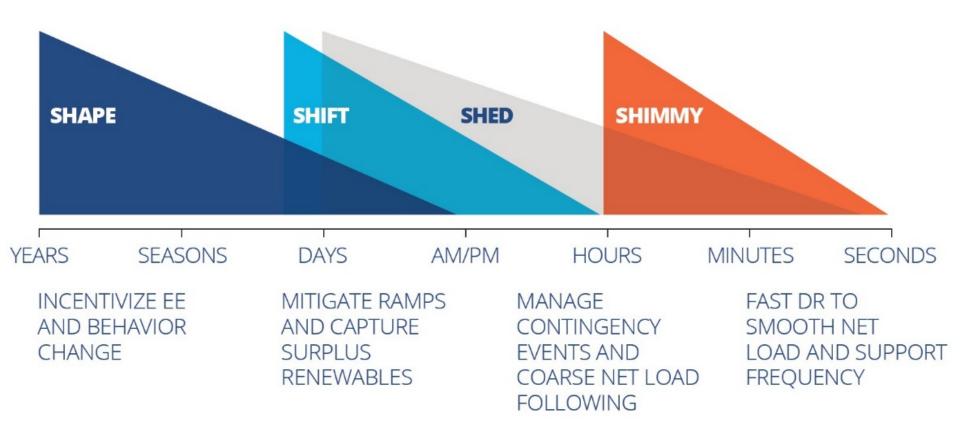
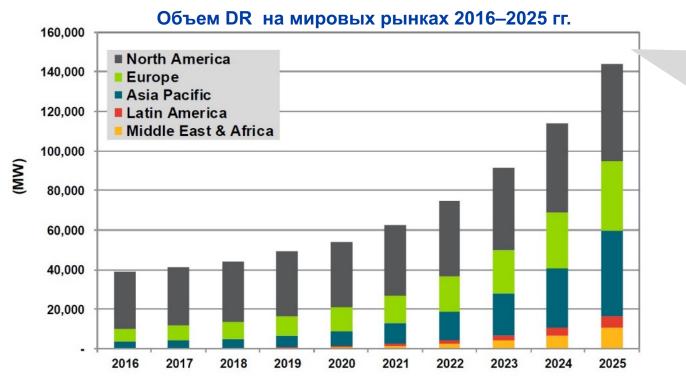


Рисунок: Lawrence Berkeley National Laboratory, 2025 California Demand Response Potential Study



Объем DR на мировых рынках электроэнергии

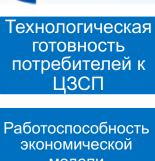
Объем мощности DR в мире в 2016 г. составил 39 ГВт, из них 28 ГВт на территории Северной Америки: 21 ГВт – за счет программ DR для коммерческих и промышленных потребителей и 7 ГВт – за счет программ DR для бытовых потребителей.

2016: Navigant Research прогнозирует 144 ГВт DR в мире к 2025 г.

2017: SEDC оценивает текущий объем DR в Европе в 20 ГВт (при потенциале в 100 ГВт) с перспективой роста потенциала до 160 ГВт в 2030

Согласно прогнозам Navigant Research в 2025 г. объем DR в Северной Америке (в основном в США) составит 49,3 ГВт

Источник: Navigant Research, 2016



Основные характеристики механизма ценозависимого потребления на оптовом рынке

- 0
 - 20 июля 2016 года утверждено Постановление Правительства РФ № 699 «О внесении изменений в Правила оптового рынка электрической энергии и мощности».
 - Участие добровольное
 - Потребитель принимает на себя обязательства по изменению графика потребления по запросу со стороны энергосистемы
 - К участию допускаются крупные потребители (пиковое потребление не менее 5 МВт), график нагрузки которых формируется в результате конкурентного отбора заявок в РСВ, имеющие возможность снижать потребление в значительном объеме (не менее 2 МВт)
 - Потребитель получает снижение оплаты мощности независимо от количества разгрузок (плата за готовность)
- Необходимость разгрузки определяется с помощью двукратного расчета РСВ с разгрузкой и без разгрузки. При наличии экономического эффекта в виде снижения цены РСВ не менее чем на 1 %, потребитель получит торговый график с учетом разгрузки (до 19 часов накануне)
- Количество разгрузок для любой программы ограничено: не более 10 раз в месяц
- Предусмотрены три варианта участия: Разгрузка на 8 / 4 / 2 часов подряд с оплатой соответственно по цене КОМ / 0,5 цены КОМ / 0,25 цены КОМ
- При неисполнении обязательств по разгрузке для потребителей, так же как и для генераторов, предусмотрена финансово-экономическая ответственность в размере 25% стоимости мощности

Анализ действующего механизма ЦЗСП на ОРЭ

Потребители оптового рынка готовы к участию в управлении спросом, однако их ресурс ограничен. Следует привлечь к управлению спросом розничных потребителей

модели

ЦЗСП вытесняет с рынка выработку неэффективных электростанций, способствуя выработки повышению электроэнергии эффективными

Разгрузка на 0,3% от ТГ приводила к снижению цены РСВ до 5.4%.

Договорная модель, финансовые расчеты

ЦЗСП успешно интегрировано в договор о присоединении и в систему финансовых расчетов на ОРЭМ

Обеспечение контроля исполнения обязательств

- тестирование до начала года,
- тестирование при отсутствии разгрузок;
- контроль исполнения разгрузки по данным КУ путем сравнения с плановым графиком.

Коэффициент фактической готовности ЦЗСП за 2017-18 гг. составил 66,2 %

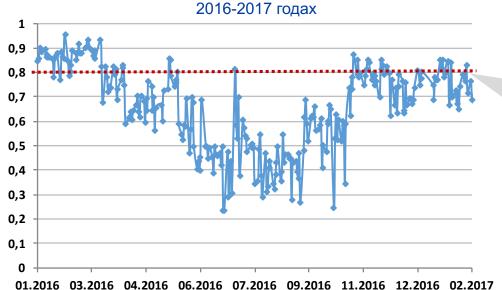
Критерии «срабатывания» ЦЗСП

Необходимо уточнение критериев разгрузки ЦЗСП используется недостаточно настройки часто из-за коэффициента востребованности. Гибкая настройка коэффициента позволит достичь эффективного количества срабатываний (3-5 раз в месяц)

Модель ценообразования

Требует настройки

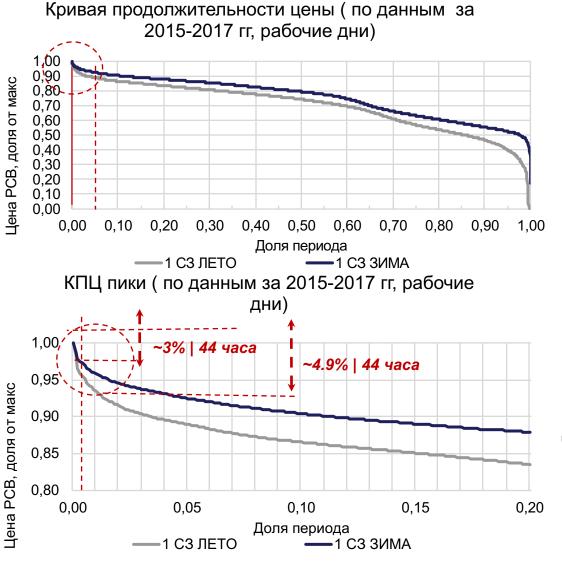
Участие потребителей в ЦЗСП вознаграждается в форме снижения оплаты мощности по цене КОМ. Более сложный механизм участия в неявном управлении при отсутствии положительного эффекта для других участников рынка «оплачивается» кратно выше


Настройка критериев действующего механизма ЦЗСП (1)

Увеличение количества разгрузок потребителей до расчетных 3-4 в месяц сформирует положительный эффект для рынка даже при текущих объемах разгрузки

Основной причиной, ограничивающей срабатывание механизма, стал высокий коэффициент востребованности тепловой генерации

Фактическое среднее значение коэффициента, характеризующего степень востребованности предложения тепловой генерации в ценовой зоне, в



- С мая 2017 года Наблюдательным советом НП «Совет рынка» установлены новые значения коэффициента:
- 0,75 для зимнего сезонного периода календарного года
- 0,7 для остальных сезонных периодов календарного года (летнего и межсезонного)

Снижение коэффициента, отражающего степень востребованности предложения тепловой генерации в ценовой зоне, до 0,5 увеличит число срабатываний механизма ЦЗСП до 3-4 разгрузок в месяц

Настройка критериев действующего механизма ЦЗСП (2)

Суммарная продолжительность периодов цен ПИКОВЫХ составляет около 50 часов При год. ЭТОМ В продолжительность отдельных периодов пиковых цен статистически редко превышает часа. Это делает нецелесообразным применение разгрузки потребителей длительностью 8 часов

Настройка экономических параметров (1)

Оптимизация платы за мощность: возможности потребителя

Оптимизация путем переноса потребления из часа пиковой нагрузки региона

• Пик региона не совпадает с пиком ЕЭС России – экономический эффект для системы незначителен. Разгрузка должна проводиться каждый рабочий день

Строительство собственной генерации

• Отказ потребителя от покупки энергии в ЕЭС России приводит к повышению платы для оставшихся в системе потребителей, также стимулируя их к строительству собственной генерации

Участие в ценозависимом снижении потребления

• Вытесняет с рынка выработку неэффективных электростанций, способствуя повышению выработки электроэнергии эффективными

Ценозависимое потребление способствует развитию конкуренции технологий, позволяющих потребителю оптимизировать оплату э/э и мощности

Оптимизация платежа потребителей: альтернатива

фактический час пиковой нагрузки для Томской области

Многие потребители оптового и розничного рынков, имеющие возможность изменять потребление внутри суток, уже сейчас участвуют в неявном управлении спросом для снижения полного платежа за мощность.

Разгрузка каждый рабочий день в час пика региона приводит к экономии потребителя в объеме разгрузки по полной цене мощности, что по 1 ЦЗ более чем в 5 раз превышает цену КОМ, а по 2 ЦЗ в 2 раза. Дополнительно есть возможность экономить на оплате сетевого тарифа.

- Пик региона не совпадает с пиком ЕЭС России экономический эффект для системы незначителен. Разгрузка должна проводиться каждый рабочий день;
- Отказ потребителя от покупки энергии в ЕЭС России приводит к повышению платы для оставшихся в системе потребителей, также стимулируя их к строительству собственной генерации

Выравнивание ценовых условий между явным и неявным управлением спроса позволит эффективно использовать ресурс потребителей, уже участвующих в неявном управлении спросом, без дополнительных затрат.

Выравнивание условий ЦЗСП с потребителями, оптимизирующими оплату мощности

Оплата мощности потребителем, смещающим потребление с часа пик региона

Оплата мощности потребителем, отказавшимся от смещения потребления с часа пик региона в пользу ЦЗСП

Действующая модель

(Рбаз – **ДР**)×Цмощ

<

Рбаз ×Цмощ – ДР×Цком

Предлагаемая модель

(Рбаз – **ДР**)×Цмощ

Рбаз **×Цмо**щ – **ДР×**Цмощ

где ΔP – ресурс изменения потребления путем смещения из часа пик региона или путем участия в ЦЗСП

Участие в ЦЗСП

- даст равный экономический эффект для потребителя, при этом разгрузка будет проводиться только несколько раз в месяц в заранее заданные часы;
- становится привлекательным для тех участников рынка, которые рассматривают возможность отказа от покупки электроэнергии в ЕЭС России за счет строительства собственной генерации.

Розничные потребители в управлении спросом

14

- Объем ресурса оптовых потребителей (не гарантирующих поставщиков) ограничен,
- Основной потенциал управления спросом сосредоточен в бытовом и коммерческом секторе (международный опыт, оценки МЭА),
- Активное внедрение инновационных технологий, таких как интернет вещей, умный дом и др., обеспечивающих простоту участия в управлении спросом, происходит именно у розничных потребителей

При этом:

- непосредственное участие потребителей розничного рынка в управлении спросом на оптовом рынке невозможно из-за высоких издержек на организацию взаимодействия инфраструктуры ОРЭМ с розничными потребителями, отсутствия у потребителей необходимых знаний и компетенций, а также опорных технологий.
- контроль исполнения обязательств розничных потребителей затруднен в связи с отсутствием планирования графиков потребления (в отличии от потребителей ОРЭ)

Решение:

- создание специализированных организаций агрегаторов управления спросом
- использование специализированных методов контроля исполнения обязательств

потребителя

Оценка возможностей

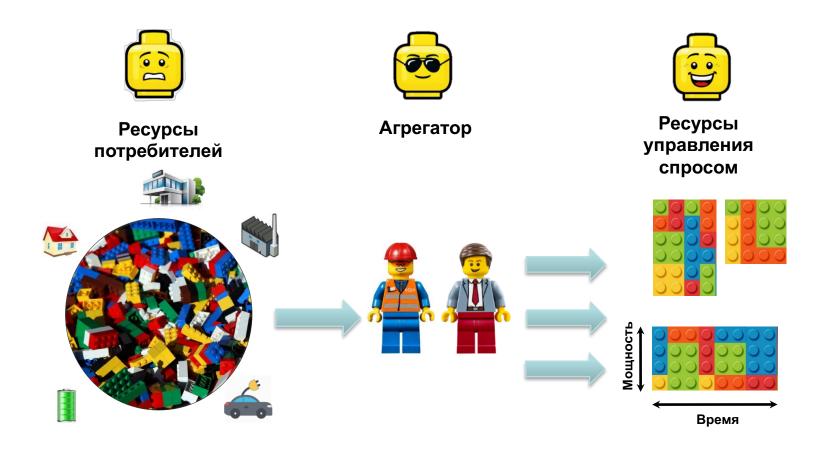
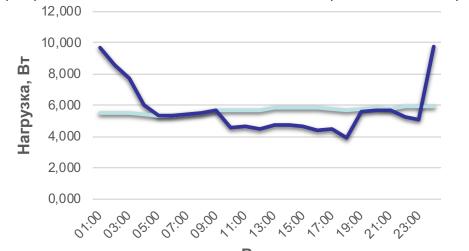

Тестирование

Рисунок: DNV GL

Агрегаторы управления спросом на электроэнергию

Агрегаторы управления спросом — организации, которые путем приобретения услуг розничных потребителей консолидируют их способность изменять потребление и конвертируют ее в товары и услуги на рынках электроэнергии, мощности и системных услуг, транслируя часть полученного на оптовом рынке эффекта потребителям



Демонстрация возможностей розничных потребителей: серия натурных экспериментов Системного оператора

Центр коллективного пользования Новосибирского Академпарка

управление нагрузкой с использованием накопителей

- Октябрь 2017: ПАО «Кузбассэнергосбыт» и Ледовый дворец в г. Ленинск-Кузнецкий возможности изменения нагрузки потребителей с холодильным оборудованием;
- Июнь 2018: ООО «ИННОВАТТ» и базовые станции мобильной связи ООО «Т2 МОБАЙЛ» (торговая марка «TELE2») и ПАО «МТС» - возможности группового управления нагрузкой с использованием накопителей;
- Декабрь 2018: ГК «Тион» и здание Центра коллективного пользования Новосибирского Академпарка возможности изменения нагрузки климатического оборудования в коммерческой недвижимости;
- Декабрь 2018: АО «АтомЭнергоСбыт» и 9 потребителей в 3-х регионах присутствия сбыта возможности группового управления нагрузкой разнородных потребителей

Примеры крупных компаний-агрегаторов в мире

EnerNOC: крупный агрегатор программ по управлению спросом в мире. Обслуживает 6 ГВт мощности у 8000 потребителей по всему миру. Также является ведущим поставщиком консультационных и технологических услуг и решений в области управления энергопотребления промышленных и коммерческих потребителей.

В августе 2017 года EnerNOC была приобретена Enel Group.

comverge*

■ Компания Itron: недавно купила Comverge – объединяет 2,7 ГВт в программах DR на территории обслуживания порядка 30 крупных поставщиков электроэнергии в США.

REstore

■ Restore: лидер на европейских рынках первичного регулирования и контроля частоты. Сейчас доступно 1 582 МВт мощности, из которой 99,6% под управлением. С ноября 2017 года компания была приобретена Centrica и входит в состав подразделения Distributed Energy & Power. REstore предлагает возможности гибкого управления нагрузкой распределительным компаниям во Франции, Великобритании, Бельгии и Германии.

cpower.

■ CPower: ведущий поставщик DR в Калифорнии, обслуживает более 1500 коммерческих, промышленных, государственных и некоммерческих потребителей.

■ Energy Pool: поставщик DR, который объединяет крупных промышленных и коммерческих потребителей. Под управлением 24/7 находится 2500 МВт нагрузки. Штаб-квартира во Франции. Предлагают свои решения в управлении нагрузкой во Франции, Великобритании, Турции, Польше, Японии и др.

Пример: EnerNOC

ENERNOC

An Enel Group Company

- Более 8000 потребителей
- 14000 узлов сети
- Объем DR более чем 6800 MBт
- 9 стран (США, Австралия, Канада, Ирландия, Япония, Новая Зеландия, Польша, Южная Корея и Великобритания)
- Единый операционный центр в Дублине
- Летом 2017 г. компания Enel Green
 Power North America купила EnerNOC
 примерно за 250 млн. \$

Основные предложения концепции

	Оглавление	
	Резюме	4
	Термины и определения	
	1. Актуальность формирования новой пр	рактики8
	1.1. Мировые тренды	8
	Управление спросом на электроэнергию	
	Роль агрегаторов нагрузки	10
	4.3 4	12
		13
		тики
		13
		ункционирования)14
		есения к соответствующим объектам16
		16
		19
		надежности20
		лей20
		еление объема разгрузки потребителей)21
		ения или неопределенности28
		29
		29
		вовой базы30
Концепция функционирования		31
попцепции футиционировании		едствий
агрегаторов распределенных		34
		ведении пилотных проектов36
энергетических ресурсов в составе		звления спросом
Единой энергетической системы России.		37
Агрегаторы управления спросом на электроэнергию		ффективности40
		мы управления спросом41
		сурсов42
		42
		риков базовой нагрузки

- Создать новый тип участников оптового рынка – агрегаторов управления спросом
- Допустить к работе в качестве агрегаторов сбытовые компании / гарантирующих поставщиков, а также независимые компании
 - Обеспечить возможность участия агрегаторов во всех сегментах оптового рынка, а также возможность оказания услуг по обеспечению системной надежности

Внедрение агрегатора управления спросом на розничных рынках предлагается проводить в 2 этапа:

- 1. Технологический этап в рамках реализации пилотных проектов организуется отработка технологий взаимодействия агрегаторов с потребителями розничного рынка и с инфраструктурой оптового рынка через Системного оператора
- 2. Организационно-юридический этап отработанные на предыдущем этапе технологии закрепляются нормативно и деятельность агрегаторов интегрируется в механизмы оптового рынка электроэнергии и мощности

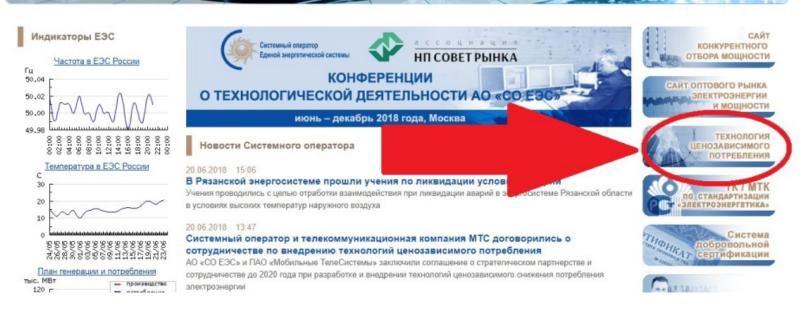
Для проведения пилотных проектов:

- в перечень услуг по обеспечению системной надежности включается новый вид услуг – услуги по управлению спросом на электрическую энергию
- системный оператор выступает в качестве единого закупщика услуг агрегаторов, проводит отбор таких агрегаторов, оплачивает их услуги, контролирует исполнение обязательств по разгрузке

Информационный портал об управления спросом

http://so-ups.ru/index.php?id=dr

Филиалы и представительства



Частота в ЕЭС, Гц

50,031

ЕЭС России

Контакты и реквизиты

Филиалы и представительства

Контакты и реквизиты

www.so-ups.ru

Оперативная информация о работе ЕЭС России

Индикаторы ЕЭС

Температура в ЕЭС России

Новости Системного оператора

Потребление электроэнергии в ЕЭС России в августе 2016 года увеличилось на 2,9 % по

Спасибо за внимание

Введен в действие новый национальный стандарт в области релейной защиты и автоматики

1 сентября введен в действие национальный стандарт Российской Федерации ГОСТ Р 56865-2016 «Единая энергетическая система и изолированно работающие энергосистемы. Оперативно-диспетчерское управление. Релейная защита и автоматика. Технический учет и анализ функционирования. Общие требования»

В Новоуральске прошел VI Межрегиональный летний образовательный форум «Энергия молодости»

С 23 по 27 августа 2016 года в Новоуральске (Свердловская область) прошел VI Межрегиональный летний образовательный форум «Энергия молодости», в числе организаторов которого Благотворительный фонд «Надежная смена» и АО «Системный оператор Единой энергетической системы»

Системный оператор представил актуальные исследования и разработки в сфере управления энергосистемами на 46-й Сессии СИГРЭ в Париже

Три из представленных докладов были полностью подготовлены специалистами AO «CO E3C», четыре – в

